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Abstract: In this note, motivated by the Klebanov-Polyakov conjecture we investigate

the strongly coupled O(N) vector model at large N on a squashed three-sphere and its

holographic relation to bulk gravity on asymptotically locally AdS4 spaces. We present

analytical results for the action of the field theory as the squashing parameter α → −1,

when the boundary becomes effectively one dimensional. The dual bulk geometry is AdS-

Taub-NUT space in the corresponding limit. In this limit we solve the theory exactly and

show that the action of the strongly coupled boundary theory scales as ln(1 + α)/(1 + α)2.

This result is remarkably close to the −1/(1 + α)2 scaling of the Einstein gravity action

for AdS-Taub-NUT space. These results explain the numerical agreement presented in

hep-th/0503238, and the soft logarithmic departure is interpreted as a prediction for the

contribution due to higher spin fields in the bulk AdS4 geometry.
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1. Introduction and summary

The AdS/CFT correspondence states that string theories in asymptotically AdS spacetimes

with d dimensions are dual to certain conformal field theories in d − 1 dimensions [1 –

3]. Testing these dualities is in general difficult because the theories involved are very

complicated and are only tractable in different limiting regions of parameter space. However

in [4] Klebanov and Polyakov suggested that a simpler duality exists between the large N

limit of the singlet sector of the critical O(N) vector model in three dimensions and the

minimal bosonic higher spin gauge theory in four dimensional Anti de Sitter space. In [5]

an extension of this duality was proposed between the O(N) model on a squashed three

sphere and the higher spin gauge theory on AdS Taub-NUT and AdS Taub-Bolt geometries

with a phase transition occurring between the two on the gravitational side. The squashed

three sphere is an S1 bundle over S2 with metric

ds2 =
a2

4

(

σ2
1 + σ2

2 +
σ2

3

1 + α

)

. (1.1)

Where the σi are defined by:

σ1 + iσ2 = e−iψ(dθ + i sin θdφ) (1.2)

and

σ3 = dφ + cos θdφ (1.3)

The squashing parameter α lies in the range

−1 ≤ α < ∞ (1.4)

with α = 0 corresponding to the round three sphere. In the large α limit the squashed

sphere approaches the direct product space S2 × S1, and the periodicity of the S1 fibre
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can be thought of as an inverse temperature. The limit α → −1 is the limit of extreme

squashing which was not accessible analytically before, and this will be the main focus of

this work. In this limit one of the dimensions becomes very large compared to the others

and the field theory becomes effectively one dimensional.

This duality has the advantage compared to the usual string/gauge theory dualities in

that the QFT is exactly solvable and can be compared to the semiclassical properties of

Einstein’s gravity in the absence of a proper formulation of the higher spin gauge theories

in AdS Taub-NUT and AdS Taub-Bolt spacetimes. It is useful to solve the O(N) model

on a squashed three sphere because it provides a one parameter family of field theory/

gravity dualities, whose free energies exhibit a non monotonic behavior as a function of the

squashing parameter as argued in [5]. For other related works on the O(N) model and the

Klebanov-Polyakov duality, see [6 – 8].

The squashed three sphere is the conformal boundary of AdS Taub-NUT and AdS

Taub-Bolt geometries [9, 10]. As in the canonical example of the Hawking Page transi-

tion [11], only one of these two geometries dominates the partition function. In particular,

as a function of α, there is a Hawking-Page transition from AdS Taub-NUT to AdS Taub-

Bolt, the latter dominating for large α. In [12, 13] the action of AdS Taub-NUT was found

to be:

ITN = − 6π

GR

(1 + 2α)

(1 + α)2
(1.5)

where G is Newton‘s constant and R is the Ricci scalar which is negative in these back-

grounds. For AdS Taub-Bolt the corresponding result is:

ITB =
24π

RG
(1 + α)−

1

2

(

mb +
3

4
r(1 + α)−1 − r3

)

(1.6)

with

mb =
1

2
r +

1

8r
(1 + α)−1 +

1

2

(

r3 − 3

2
r(1 + α)−1 − 3

16r
(1 + α)−2

)

(1.7)

and

r =
1

6
(1 + α)

1

2 (1 + (1 − 12(1 + α)−1 + 9(1 + α)−2)
1

2 ) (1.8)

In the limit of large α the AdS Taub-Bolt action grows linearly:

I =
4π

9GR
α α → ∞ (1.9)

The action of the O(N) model was calculated in [5] for α > −8

9
and is shown in Fig

1 below, and the result for the gravitational side is shown in Fig 2, where the action has

been normalized so that it agrees with the field theory results at large α and a constant has

been added so that the peaks coincide. They found a close numerical agreement between

the results for the O(N) model and AdS Taub-NUT space below a critical value of α and

with AdS Taub-Bolt above it, but with a smooth crossover between the two which suggests

that the higher spin gauge fields have the effect of smoothing out the phase transition.

In [5] the large α behavior of the QFT action at strong coupling was found to be:

Iaλ≫1 = −NζR(3)

10π2
α (1.10)
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Figure 1: The action I

N
of the O(N) model at strong coupling as a function of α.
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Figure 2: The Gravitational action as a function of α.

The linear behaviour is guaranteed by the thermodynamic interpretation which emerges

at large α wherein the metric effectively approaches S2 × S1.

The striking and somewhat mysterious feature of the agreement found in [5], is that

the linear beahviour at large α turns over at small α (see figures 1 and 2). In this note

we attempt to understand this non-monotonic behaviour analytically, and in the process

go beyond some aspectds of the work of [5] to the limit α → −1. The main result of this

paper is the strong coupling action of the O(N) model near the lower limit of the range of

the squashing parameter, α → −1:

Iaλ≫1 =

(

ln(1 + α)

3(1 + α)2
+

0.0614093

(1 + α)2

)

N (1.11)

The results (1.10) and (1.11) are to be compared and contrasted with (1.9) and (1.5).

It can be seen that the qualitative behavior of the free energy of the O(N) model

as α → −1 and at large α closely reproduces the results of semiclassical gravity. The

logarithmic deviation in the leading order term in the limit α → −1 is a prediction for

the effect of including higher spin gauge fields in addition to gravity in the bulk dual.

Interestingly there appears to be no a priori reason why the results for the higher spin

gauge theory should be so close to the pure gravity result, though these results suggest

that the effects of the higher spin gauge fields cannot be drastic.
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In section two we summarize some useful results from the O(N) model and in section

three we describe the calculation in more detail. Section four contains a discussion and

summary.

2. O(N) model in the large N limit

The O(N) model has been extensively studied in various dimensions e.g. see [14]. In

Euclidean space the O(N) model has the classical action,

S =

∫

dxD√
g

(

1

2
∇Φ · ∇Φ +

1

2
m2Φ · Φ +

λ

4N
(Φ · Φ)2

)

. (2.1)

The coupling constant λ flows from a free fixed point in the UV to another fixed point in the

IR. This model can be solved exactly in the strictly large N limit by deriving an effective

potential. This can be done by introducing a homogenous background expectation value

φ for the O(N) field and then splitting the field into a VEV and fluctuations as follows:

Φ = (
√

Nφ + δφ, π1, π2, . . . . . . , πN−1) . (2.2)

Here φ is the homogeneous background and δφ and ~π are the fluctuations around it. Nor-

mally this would break the O(N) symmetry to O(N − 1) resulting in goldstone bosons,

however as argued by [5] in these circumstances the symmetry is not broken because the

path integral includes an integration over the vacuum manifold which implies that symme-

try breaking does not occur in a compact space. The fluctuations can then be integrated

out, and the result is:

Veff(φ, σ)

N
=

1

2
(m2 + λσ)φ2 − λ

4
σ2 +

1

2Vol(M)
ln det′

(−¤ + m2 + λσ

µ2

)

− 1

2Vol(M)

(

1 + ln π + ln
φ2

µ

)

,

(2.3)

Where Vol(M) is the volume of the manifold on which the field theory is formulated. In the

present context M represents the squashed three sphere. µ is a dimensional scale which is

like the sliding renormalization scale. The prime in det′ indicates that the integration was

not done over the constant mode which is then dealt with separately. In the large N limit

only the configuration obtained by extremising (2.3) contributes to the partition function.

Minimizing the effective potential with respect to φ and σ yields the equations:

φ2(m2 + λφ) =
1

Vol(M)
(2.4)

and

φ2 − σ +
1

Vol(M)
Tr′

(

1

−¤ + m2 + λσ

)

= 0. (2.5)

An ”effective pion mass” can then be defined:

m2
π = m2 + λσ (2.6)
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so that equations (2.4) and (2.5) can be rewritten as a gap equation for m2
π

m2
π = m2 +

λ

Vol(M)
Tr

(

1

−¤ + m2
π

)

(2.7)

where the constant mode has been absorbed into the above. Once (2.7) has been solved

the effective potential can be evaluated at the extremum to give the action:

S =
N

2

(

− Vol(M)

2λ
(m2 − m2

π2) + ln det
−¤ + m2

π

µ2
+ ln(µ3Vol(M))

)

. (2.8)

To evaluate (2.7) it is necessary to evaluate the trace. This can be done by the method of

zeta function regularization. The zeta function for an elliptic operator A is defined by

ζ(s) = TrA−s (2.9)

so that

ln det
−¤ + m2

π

µ2
= − lim

s→0

d

ds
Tr

(−¤ + m2
π

µ2

)−s

= −ζ ′(0). (2.10)

The zeta function on the squashed three sphere can be written in the form [15 – 17]

ζ(s) =
∞
∑

l=1

l−1
∑

q=0

l(aµ)2s

(l2 + α(l − 1 − 2q)2 + a2m2
π − 1)s.

, (2.11)

The self-consistent gap equation which determines the solution of the model is highly

non-trivial for two reasons. Firstly, it is a a nonlinear equation for m2
π. Secondly, it involves

a zeta function on the squashed sphere, namely ζm2
π

(1) which is a complicated object and

needs to be defined via analytic continuation.

In addition to these ingredients, we need to specify the coupling constant of the theory

λ which is dimensionful. The relevant dimensionless parameter in the theory is the combi-

nation aλ. Since λ is a relevant coupling in three dimensions, aλ ≪ 1 is the weak coupling

limit corresponding to taking the sphere size to be small, thus approaching the UV free

fixed point.

We will be primarily interested in the strong coupling limit aλ → ∞ which corresponds

to the IR fixed point theory on the squashed sphere. In this limit, a drastic simplification

of the gap equation occurs, allowing us to solve the problem analytically in the α → −1

limit. The gap equation at strong coupling (2.7) determines m2
π to be a zero of ζm2

π

(1).

The results of [5] provide evidence that the resulting value for m2
π is finite and non-negative

for all allowed values of the squashing parameter α.

We will now evaluate the action of the theory in the α → −1 limit, at strong coupling

aλ → ∞. The fact that m2
π has a finite value determined by the zero of ζm2

π

(1), implies

that the first term in (2.8) is zero at strong coupling. The volume term will finally be found

to give a subleading contribution to the action. The dominant contribution in the α → −1

limit therefore is: −N
2
ζ ′(0). As this is superficially divergent it needs to be analytically

continued by standard methods described in the appendix.
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3. The O(N) model as α → −1

The zeta function (2.11) is superficially divergent, but a finite value may be obtained

by analytically continuing the sum, firstly by applying the Abel-Plana formula, and then

by carrying out a Sommerfield Watson transformation. The lengthy technical details are

summarized in the appendix. We find:

ζ(s)

µ2s
=

a2sA

(1 + α)s
+ a2s

∫

1

0

B(y)dy

(1 + αy2)s
− 2ia2s

(1 + α)s

∫ ∞

0

C(y)dy

1 + exp(2πy)
(3.1)

where the functions A,B,C are themselves infinite sums defined in the appendix. After

lengthy complex analysis manipulations, using the above result, we find that the zeta

function in the limit α → −1, is given by:

ζ ′(0) = − log(1 + α)

3(1 + α)2
− 10

9(1 + α)2
− 2 ln 2

3(1 + α)2

+

∫ ∞

0

16y ln(1 + 4y2) − 8(4y2 − 1) tan−1 2y

exp(2πy) − 1
dy.

(3.2)

This then evaluates to:

I =
N

2

(

ln(1 + α)

3(1 + α)2
+

0.0614093

(1 + α)2

)

. (3.3)

The above argument relies on a2m2
π being finite at strong coupling and in the entire

range of allowed values of α. In fact the numerical results in [5] indicate that a2m2
π from

the solution to the strong coupling gap equation approaches zero in the α → −1 limit.

4. Summary and discussion

We have solved the strongly coupled O(N) model exactly in the limit α → −1 and found

a soft logarithmic deviation from the results of semiclassical gravity in this regime. It

is surprising that the scaling of the action of the strongly coupled O(N) model in this

limit, is so similar to that of classical gravity on AdS-Taub-NUT space. The “anomalous”

logarithmic deviation can only be explained within the confines of the Klebanov-Polyakov

conjecture as being due to the effects of the higher spin gauge fields. There appears to be

no obvious physical explanation for the behavior of the action in this limit, but it would be

interesting to see if it is because in the α → −1 limit the field theory becomes effectively

one dimensional.

In the other extreme of the allowed range of α, namely at large α, it is evident from (1.9)

and (1.10) that classical gravity and boundary field theory are qualitatively similar. This is

not very surprising, since at large α, the boundary theory can be reinterpreted as being at

a finite temperature given by α. The linear scaling of the action with α, and equivalently

the free energy scaling as α2, is what one expects in a field theory in three dimensions.

Nevertheless, from this we learn, assuming the validity of the Klebanov-Polyakov conjec-

ture, that the higher spin theory dual to the O(N) model at large squashing, should behave

– 6 –
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in qualitatively the same fashion as Einstein gravity in AdS-Taub-Bolt space. We remark

that the coefficients for the field theory (1.10) and gravity (1.9) actions are not expected

to match as the higher spin gauge fields were not included in the gravity calculation. In

any case, matching of these coefficients only sets up the dictionary between 1/N in field

theory and the bulk curvature in units of the 4d Planck mass. The above discussion com-

pares with the AdS5/CFT4 case where doing a strongly coupled field theory calculation is

difficult and there is a 3/4 discrepancy factor between strong and weak ’t Hooft coupling

results due to higher stringy modes becoming light at large, string-scale curvatures in the

string dual of the weakly coupled gauge theory.

The analytic results obtained in this paper, for the strongly coupled field theory near

α → −1, when combined with the linear behaviour at large α, reproduce remarkably well

the non-monotonic behaviour of the classical bulk gravity action presented in figure 2.

Note that the non-monotonic behaviour in the bulk (without higher spin fields) is due to a

Hawking-Page transition which is necessary in order to pass over from the AdS-Taub-NUT

to the AdS-Taub-Bolt phase, the latter showing a linear beahviour with α at large α. The

message is that even though we don’t have a proper formulation of the higher spin theory in

these backgrounds, our results suggest that gravity reproduces qualitatively similar results

to the higher spin gauge theory dual to the O(N) model.

Finally, AdS Taub Nut space is obtained by filling the volume of a squashed three

sphere with a hyperbolic metric with negative cosmological constant [18]. In the limit

α → −1 the space becomes a Bergmann space which can be described as a coset space

SU(2, 1)/U(2) which has been studied in [19]. It would be interesting to understand the

behavior of the action from the bulk perspective by considering higher spin gauge fields

on this Bergmann space. For a detailed construction of bulk-boundary and bulk-bulk

propagators in this space see [20]. Other work in AdS Taub Nut space is contained in [21 –

23].
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A. Analytic continuation of the zeta function

As (2.11) is divergent if s is set directly to zero it will need to be continued analytically.

This was done by converting the sum over q into an integral using the Abel-Plana formula

and evaluating the l summation using a Sommerfield-Watson transformation. (2.11) has

branch cuts at

q =
l − 1

2
± 1

2

(

1 − l2 − a2m2
π

α

)1/2

, (A.1)

– 7 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
4

with these branch cuts the Abel-Plana formula of the form (A.2) may be used to evaluate

the l sum.

m
∑

i=n

φ(x) =
1

2
(φ(n) + φ(m)) +

∫ m

n
φ(x)dx

− i

∫ ∞

0

dy

exp(2πy) − 1
(φ(n − iy) − φ(n + iy) − φ(m − iy) + φ(m + iy)) .

(A.2)

Using this we obtain:

ζ(s)

µ2s
=

a2sA

(1 + α)s
+ a2s

∫

1

0

B(y)dy

(1 + αy2)s
− 2ia2s

(1 + α)s

∫ ∞

0

C(y)dy

exp(2πy) − 1
, (A.3)

where:

A =
∞

∑

l=1

l

((l + G)2 − h2)s
, (A.4)

B =
∞

∑

l=1

l(l − 1)

((l + I)2 − J2)s
, (A.5)

C =
∞

∑

l=1

l
1

((l + K)2 − M2)s
− 1

((l + K∗)2 − (M2)∗)s
. (A.6)

Here G,H, I, J,K,M are given by:

G =
−α

1 + α
(A.7)

−H2 =
a2(mπ)2(1 + α) − 1

(1 + αy2)2
, (A.8)

I =
−αy2

(1 + αy2)
, (A.9)

−J2 =
a2m2

π(1 + αy2) − 1

(1 + αy2)2
, (A.10)

K =
α(−1 + 2iy)

1 + α
, (A.11)

−M2 =
a2m2

π − 1 + α(−1 + 2iy)

1 + α
− α2(−1 + 2iy)2

(1 + α)2
, (A.12)

The sums over l can be evaluated using a Sommerfield-Watson transformation. Apply

this to the A we find

A =
i

2

∫

C1

z cot πzdz

((z + G)2 − H2)s
, (A.13)

where the contour C1 is shown in figure three. For Re(s) > 2 this can be deformed into

C2, also shown in figure three.

It is useful to rewrite cot πz with the identities

cot πz = i

(

1 +
2

exp 2iπz − 1

)

, (A.14)

– 8 –
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Figure 3: The contours used for the analytic continuation of the zeta function.

between z1 and z2 and

cot πz = i

(

− 1 +
2

1 − exp(2iπz)

)

, (A.15)

between z2 andz3.

The integrals over the exponential pieces are then manifestly finite and can be evaluated

along C3. The integrals over the constant pieces can be done analytically for Re(s) > 2 .

These expressions are then evaluated at s = 0 to define the analytically continued function.

A similar method is used for B and C. In the case of C the branch points are not on the

real axis so the integrals are no longer along the real axis but along a tilted contour. Using

this method the following results are obtained in the limit α tends to minus one.:

A |s=0 =
1

(1 + α)2
, (A.16)

d

ds
A |s=0 =

2 log(1 + α)

(1 + α)2
+

3

(1 + α)2
− 2 log 2

(1 + α)2
, (A.17)

∫

1

0

B |s=0 (2 log a−log(1+αy2) = − 4 log a

3(1 + α)2
+

1

3(1 + α)2
+

2 log(1 + α)

3(1 + α)2
, (A.18)

∫

1

0

dB

ds
|s=0 =

4 log(1 + α)

3(1 + α)2
− 10

9(1 + α)2
− 4 log 2

3(1 + α)2
(A.19)

C |s=0 = − 8yi

(1 + α)2
, (A.20)

dC

ds
|s=0 =

2i

(1 + α)2
(4y(−7+8 log 2−4 log(1+α)+2 log(1+4y2))

−4(4y2 − 1) tan−1 2y) . (A.21)

Putting the above together gives:

ζ ′(0) = − log(1 + α)

3(1 + α)2
− 10

9(1 + α)2
− 2 ln 2

3(1 + α)2

+

∫ ∞

0

16y ln(1 + 4y2) − 8(4y2 − 1) tan−1 2y

exp(2πy) − 1
dy.

(A.22)

The integrals can then be evaluated numerically.
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